
Practical AI Application Development for Javascript Developers 2

Practical AI Application Development for Javascript Developers 3

Title:

Subtitle:

Introduction

Module 1: JavaScript for AI

Advantages of Using JavaScript Frameworks in AI Application Development
Module Project: Setting up a development environment

1. Setting Up Node.js

2. Setting Up Next.js

Conclusion

Module 2: Basics of AI Development

Introduction to LLMs

Basics of Prompt Engineering and Model Selection

Strategies for Better Results:

Integrating LLMs with JavaScript

Module Project: Building an AI Content Generator with Node.js and OpenAI GPT 3.5
/Mistral 7B Instruct v0.2

Practical AI Application Development for Javascript Developers 4

Prompts for Your AI Content Generator
Getting Started with OpenAI and Node.js

Writing the AI Content Generator

Getting Started with Mistral AI and Node.js

Conclusion

Additional Resources
Module 3: Integrating AI Models to JS Apps

Exploring Open-Source AI Models like Stable-Diffusion and Gemini
Exploring Closed-Source (Commercial) AI Models like Whisper and Dall-E

Working with APIs and External Libraries

Advantages of API Endpoints vs SDKs:

Handling AI Model Responses and Interactivity

Project: Build an Image Generation App Using Dall-E Integration

Setting Up the Project

Building the React Frontend

Conclusion
Additional Resources

Module 4: Introduction to Retrieval Augmented Generation

Basics of Retrieval Augmented Generation (RAG)

How RAG Works

Understanding Embeddings and Vector Databases

Overview of Open-Source RAG Tools of the Trade

Integrating Vercel AI SDK

Implementing RAG in Next.js

Module Project: Building a Research Assistant Tool with Next.js and Langchain
Our Tech Stack

Prerequisites

Setting Up Next.js

Creating the .env.local File

Installing Necessary Packages

Step 1: One-Time Query Retrieval with MemoryVectorStore

Crafting the /ingest-research Route

Step 2: Conversational Chat Retrieval with Pinecone

Advantages of Pinecone for Conversational Retrieval
Signup for Pinecone

Building the /chat-research Route

Building the Frontend

Running the Application

Practical AI Application Development for Javascript Developers 5

Title:
Practical AI Application Development for Javascript Developers

Subtitle:

Conclusion

Additional Resources
Module 5: Building Complex AI Applications

Advanced Prompt Engineering and Optimization

AI Function Calling

Crafting AI Agents
Module Projects:

Project 1: Basic AI Agent with LangChain and BabyAGI
Project 2: AI Agents with External Data Tools (LangChain and AutoGPT)
Project 3: Building a Location-Based Suggestion Agent with OpenAI SDK and Node.js

Conclusion

Resources

Module 6: Security, Ethics, and Performance in AI Development

1. Security Practices in AI Applications

Understanding AI-specific Security Risks:

Implementing Robust Security Protocols:

Regular Audits and Compliance:
2. Ethical Considerations and Best Practices In Building AI Apps
3. Privacy-focused Local LLMs
4. Enhancing and Scaling AI Applications - Strategies for Optimal Performance and
Deployment
Conclusion

Additional Resources
Additional Resources - Checklists, Roadmaps, Visual aids

Module Checklists
Module 1: JavaScript for AI

Module 2: Basics of AI Development

Module 3: Integrating AI Models to JS Apps

Module 4: Introduction to Retrieval Augmented Generation

Module 5: Building Complex AI Applications

Module 6: Security, Ethics, and Performance in AI Development

List of more projects you can build

Practical AI Application Development for Javascript Developers 6

An open-source course for Javascript developers to get into AI Application development
with checklists, projects and demos.

Introduction
I built this course hoping it would be an excellent guide for aspiring AI developers and a
valuable resource for the wider JavaScript developer community.

Over the past year, the artificial intelligence industry has been at the forefront of
technological advancement worldwide, with so many mind-blowing products and
experiments released to the world. For example, OpenAI’s ChatGPT was released in
late 2022, instantly breaking all consumer records as the fastest-growing consumer
product ever.

Practical AI Application Development for Javascript Developers 7

The possibilities are endless, and if you’re a curious javascript developer like me, your
idea notebook is brimming full of ideas you can develop. Now you can imagine how
shocked I was when the majority of early AI experiments and tutorials were released in
Python. Now, don’t get me wrong, I’m a huge fan of Python, and I’ve used Python to
build many AI apps. Plus, Python has been helpful to many data science and machine
learning communities in the past. But there has to be something for Javascript too. The
stats support this too.

Practical AI Application Development for Javascript Developers 8

According to the Stack Overflow Developer Survey 2023, JavaScript remains the most
commonly used programming language for the tenth year running, a testament to its
enduring popularity and versatility. Lately, there has been an increase in published JS
libraries and resource materials, and this course is a contribution to that effort.

Course Structure, Objectives, and Expected Outcomes

Structured to ensure a smooth transition from basic concepts to advanced applications,
this course takes a step-by-step approach. It begins with an overview of AI
fundamentals, gradually moving towards more complex topics like Retrieval Augmented
Generation and ethical AI.

Each course module is designed to build upon the previous one, ensuring a gradual and
comprehensive understanding of AI application development using JavaScript. The
course balances theoretical knowledge with practical projects, providing a well-rounded
learning experience.

As you embark on this journey, how do you envision applying AI in your JavaScript
projects? Feel free to share with me your ideas on Discord.

Module 1: JavaScript for AI
Summary: Exploration of the JavaScript ecosystem for AI, focusing on the relevance
and benefits of using Javascript frameworks like Node.js and Next.js for AI applications.

JavaScript is an excellent tool for creating interactive web pages and apps. As more
heavily funded AI startup experiments become ready for the end consumer user,
Javascript developers who are able to integrate these experiments into production-
ready web and mobile apps stand to gain a lot of career advancements.

Advantages of Using JavaScript Frameworks in AI
Application Development

Ubiquity and Community Support: JavaScript's dominance in web development
means a vast community of developers and an abundance of community resources
and support.

https://survey.stackoverflow.co/2023/
https://discord.gg/YSRuyrEuug

Practical AI Application Development for Javascript Developers 9

Versatility and Flexibility: JavaScript, coupled with frameworks like Node.js and
Next.js, offers unparalleled flexibility. Node.js, for instance, extends JavaScript's
reach to server-side programming, enabling developers to build scalable and
efficient AI-backed applications. Its non-blocking, event-driven architecture is
particularly suited for handling AI's data-intensive tasks.

Seamless Integration with AI Tools: Many AI tools and libraries are increasingly
becoming JavaScript-friendly. AI startups like OpenAI now provide Javascript
libraries that allow developers to harness the latest AI advancements in building
amazing apps directly within a JavaScript environment.

Robust Ecosystem for Frontend and Backend Development:
Although I’m familiar with a lot of Javascript frameworks and encourage others to
choose anyone that makes them comfortable. This course will heavily use Node.js
and Next.js because they make it easier to build a fullstack AI application.
With Next.js, developers can enjoy a streamlined development process, making it
simpler to build AI-powered applications with universal rendering capabilities -
critical for AI applications that require heavy data processing both on the client and
server side.

Module Project: Setting up a development environment

Note: Feel free to skip this if you already know how to do this.
Note that this setup might not always be current, for the latest setup
instructions please visit
https://nodejs.org/en and https://nextjs.org/docs/getting-started/installation

Let's roll up our sleeves and get our hands dirty.

1. Setting Up Node.js
Node.js is a runtime environment that lets you run JavaScript on the server side. It's
essential for building scalable and efficient AI applications.

Steps to Set Up Node.js:

1. Download Node.js:

https://nodejs.org/en
https://nextjs.org/docs/getting-started/installation

Practical AI Application Development for Javascript Developers 10

Visit the Node.js official website.

Choose the latest version appropriate for your operating system.

2. Install Node.js:

Run the downloaded installer and follow the installation prompts.

Ensure you select the option to install npm (Node Package Manager) as well, as
it's crucial for managing your JavaScript dependencies.

3. Verify Installation:

Open your terminal or command prompt.

Run node -v and npm -v to check the installed versions of Node.js and npm,
respectively.

You should see the version numbers displayed, confirming a successful
installation.

Example Code to Test Node.js Installation:
Create a simple JavaScript file to test your Node.js setup.

Create a file named test.js and add the following code:

console.log("Hello, Node.js!");

Run this script in your terminal with:

node test.js

If everything is set up correctly, you'll see Hello, Node.js! printed in your terminal.

2. Setting Up Next.js
Next.js is a React framework that enables server-side rendering and generating static
websites for React-based web applications.

There are currently two Nextjs setups. The old Pages Router and the new App router
setups. I won’t be making a recommendation and encourage you to try both options.

https://nodejs.org/

Practical AI Application Development for Javascript Developers 11

Instead of sharing the setup, I would recommend you visit
https://nextjs.org/docs/getting-started/installation and follow the latest instructions.

Conclusion
Congratulations! You've successfully set up your development environment with Node.js
and Next.js. You're now ready to begin building AI-powered applications.

As you explore the capabilities of Node.js and Next.js, consider how you might leverage
these tools in your upcoming AI projects. What innovative features can you envision
bringing to life in your web applications?

Module 2: Basics of AI Development
Summary:

This module delves into LLMs and prompt engineering, providing foundational
knowledge essential for AI development with JavaScript.

Imagine a world where your web applications not only respond to user inputs but also
understand and interact in a way that feels almost human. This is the world of AI, where
Large Language Models (LLMs) like GPT, Mixtral, and Claude have started a revolution.
In this module, we're going to dive into the basics of AI development, focusing on how
these powerful models can be integrated with JavaScript to create dynamic and
intelligent web applications.

Introduction to LLMs
Large Language Models represent a remarkable leap in the field of AI, offering
capabilities that span various modalities, including text, vision, audio, and multimodal (a
combination of different types). These models, such as OpenAI's GPT series, Google's
BERT, and newer models like Mixtral and Claude, learn to understand context, generate
human-like text, and even answer complex questions by being trained on vast datasets,
enabling them to perform a wide array of language-related tasks.

https://nextjs.org/docs/getting-started/installation

Practical AI Application Development for Javascript Developers 12

1. Text-Based Models: Models like OpenAI's GPT (Generative Pre-trained
Transformer) series, including the latest iteration, GPT-3, specialize in
understanding and generating human-like text. They are trained on vast datasets of
text and can perform tasks like translation, summarization, and content generation.

2. Vision-Based Models: These models are designed to understand and interpret
visual data. For instance, Google's Vision AI uses machine learning to recognize
thousands of objects, such as animals, landmarks, and products, in images.

3. Audio Models: Audio models are adept at processing and understanding sound
data. Whisper, for example, is an automatic speech recognition system that can
transcribe and translate speech across multiple languages.

4. Multimodal Models: A multimodal LLM is a type of AI that's trained with multiple
types of data. It's a subset of AI and is similar to Generative AI (GenAI). Multimodal
LLM, like Apple’s Ferret, combines various types of data, such as image, text,
speech, and numerical data, with multiple intelligence processing algorithms. This
can help multimodal AI perform better than single-modal AI in many real-world
problems.

Practical AI Application Development for Javascript Developers 13

Visit the HuggingFace dashboard for a comprehensive list of models

https://huggingface.co/docs/transformers/model_doc/mixtral#:~:text=Image
Processor-,MODELS,-INTERNAL HELPERS

Basics of Prompt Engineering and Model Selection
Prompt engineering is a vital skill in the field of AI, just as important as coding. It
involves creating queries or inputs that direct language models to generate the desired
output. The complexity lies in how the prompt is constructed; a well-structured prompt
can utilize the model's abilities to produce highly precise and relevant responses.

Strategies for Better Results:

OpenAI’s Prompt Engineering Guide has a “Six strategies for getting better
results” section. Check it out here:
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-
for-getting-better-results

https://huggingface.co/docs/transformers/model_doc/mixtral#:~:text=Image%20Processor-,MODELS,-INTERNAL%20HELPERS
https://huggingface.co/docs/transformers/model_doc/mixtral#:~:text=Image%20Processor-,MODELS,-INTERNAL%20HELPERS
https://huggingface.co/docs/transformers/model_doc/mixtral#:~:text=Image%20Processor-,MODELS,-INTERNAL%20HELPERS
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results

Practical AI Application Development for Javascript Developers 14

When selecting a model for your application, consider factors like the model's
complexity, response time, cost, and the nature of the tasks it needs to perform. Each
model has its strengths and is suited to different types of applications.

Integrating LLMs with JavaScript

Source: https://medium.com/@aiwizard/llm-models-comparison-gpt-4-bard-llama-flan-ul2-bloom-
9ad7c0c56ba5

https://medium.com/@aiwizard/llm-models-comparison-gpt-4-bard-llama-flan-ul2-bloom-9ad7c0c56ba5
https://medium.com/@aiwizard/llm-models-comparison-gpt-4-bard-llama-flan-ul2-bloom-9ad7c0c56ba5

Practical AI Application Development for Javascript Developers 15

Integrating LLMs into a JavaScript environment involves interacting with these models
via APIs/SDKs.

Note:
In the next chapter, we will further explore popular open-source AI models
and show how you can integrate them into your JS apps via APIs and
external libraries.

Module Project: Building an AI Content Generator with
Node.js and OpenAI GPT 3.5 /Mistral 7B Instruct v0.2
In the landscape of modern web development, the integration of AI through Large
Language Models (LLMs) like GPT-3.5 is not just a trend but an evolution.

This blog post will guide you through creating a simple AI content generator
using Node.js and two popular Models.

OpenAI GPT3.5 and Mistral 7B Instruct v0.2 (mistral-tiny).

By the end, you'll have a functional application that can generate blog posts, stories, or
any text-based content.

Prompts for Your AI Content Generator
Examples

To make the most of your AI content generator, it's essential to understand how
prompts can shape the content it produces. Different prompts can lead to various
types of content, from creative stories to informational articles. Below is a list of
prompt ideas, categorized by content type, to help you explore the versatility of your
content generator.

1. Blog Posts

Practical AI Application Development for Javascript Developers 16

Technology Trends: "Write a comprehensive blog post about the latest trends in
blockchain technology for 2024."

2. Creative Writing

Short Stories: "Tell a short story about a time-traveling adventure in ancient
Egypt."

Poetry: "Compose a poem about the beauty of the ocean at sunset."

3. Educational Content

Science Explainers: "Describe the process of photosynthesis in simple terms for
high school students."

Programming Tutorials: "Write a beginner-friendly tutorial on building a basic
website with HTML and CSS."

4. Marketing and Sales Copy

Product Descriptions: "Generate an enticing description for a new eco-friendly
yoga mat."

5. Personal Development

Career Advice: "Provide insightful career advice for recent college graduates in
the tech industry."

Getting Started with OpenAI and Node.js
Before diving into the code, make sure you have Node.js installed. If you don't have it,
please refer to the first module.

Step 1: Initialize Your Node.js Project

1. Create a new directory for your project.

2. Navigate to this directory in your terminal and run npm init -y to initialize a new
Node.js project.

3. Install the OpenAI npm package with npm install --save openai .

Step 2: Setting Up OpenAI API

1. Sign up for an API key from OpenAI. This key is essential to authenticate your
requests.

https://platform.openai.com/signup

Practical AI Application Development for Javascript Developers 17

2. Store your API key in a safe place. It’s recommended to use environment variables
to keep your key secure.

Writing the AI Content Generator
Now, let's get to the exciting part – coding our AI content generator.

Step 3: Configure OpenAI API in Your Application

Create a new JavaScript file (e.g., app.js) in your project directory and start by
importing the OpenAI library:

import OpenAI from "openai";

//const { OpenAI } = require('openai'); (use this if you're gett

const openai = new OpenAI({

 apiKey: process.env.OPENAI_API_KEY,

 dangerouslyAllowBrowser: true,

});

Make sure you have set your OPENAI_API_KEY in your environment variables.

Step 4: Writing the Function to Generate Content

Next, we'll write a function that uses OpenAI's SDK chat.completions.create method to
generate content:

async function generateContent(prompt) {

 try {

 const chatCompletion = await openai.chat.completions.cre

 messages: [{ role: "user", content: prompt }],

 model: "gpt-3.5-turbo",

 });

 return chatCompletion.choices[0].message.content;

 } catch (error) {

 console.error("Error generating content:", error);

 return null;

Practical AI Application Development for Javascript Developers 18

 }

}

In this function, the prompt is the input from the user, which we send to the OpenAI
generative AI model API. The API then returns the generated content based on this
prompt.

Step 5: Testing Your Application

Now it’s time to test your application. You can do this by adding a simple call to
generateContent at the end of your app.js :

const blogPostPrompt = "Write a comprehensive blog post about th

generateContent(blogPostPrompt)

 .then(content => console.log(content))

 .catch(error => console.error(error));

Run your application using node app.js and see the AI-generated content in your
console.

Full Code

import OpenAI from "openai";

//const { OpenAI } = require('openai'); (use this if you're g

const openai = new OpenAI({

 apiKey: process.env.OPENAI_API_KEY,

 dangerouslyAllowBrowser: true,

});

async function generateContent(prompt) {

 try {

 const chatCompletion = await openai.chat.completions

 messages: [{ role: "user", content: prompt }],

 model: "gpt-3.5-turbo",

Practical AI Application Development for Javascript Developers 19

 });

 return chatCompletion.choices[0].message.content;

 } catch (error) {

 console.error("Error generating content:", error);

 return null;

 }

}

const blogPostPrompt = "Write a comprehensive blog post about

generateContent(blogPostPrompt)

 .then(content => console.log(content))

 .catch(error => console.error(error));

Getting Started with Mistral AI and Node.js

Running the example below requires a Mistral AI API key.

Visit https://docs.mistral.ai/#api-access for instructions on how to get one.

1. Create a New Node.js Project

Initialize your project: Create a new directory for your project and initialize it with
npm init -y . This step creates a package.json file for managing your project
dependencies.

2. Install Mistral AI Package

Install the package: Run npm install @mistralai/mistralai in your project directory.
This command installs the Mistral AI package and adds it to your package.json .

3. Set Up Your Mistral AI API Key

Secure your API key: Store your Mistral AI API key in an environment variable. For
local development, you can use a .env file and a package like dotenv to load
environment variables. Remember, never hardcode your API keys directly into your
source code, especially when pushing code to public repositories.

https://docs.mistral.ai/#api-access

Practical AI Application Development for Javascript Developers 20

4. Write Your Node.js Application

Create a new file, for example, app.js , and write your Node.js application code:

require('dotenv').config(); // If you're using dotenv to manage

const MistralClient = require('@mistralai/mistralai').default;

const apiKey = process.env.MISTRAL_API_KEY; // Ensure this is se

const client = new MistralClient(apiKey);

async function generateContent(prompt) {

 try {

 const chatResponse = await client.chat({

 model: 'mistral-tiny',

 messages: [{ role: 'user', content: prompt }],

 });

 return chatResponse.choices[0].message.content;

 } catch (error) {

 console.error('Error:', error);

 return null;

 }

}

// Using the blog post prompt

const blogPostPrompt = "Write a comprehensive blog post about th

generateContent(blogPostPrompt)

 .then(content => console.log(content))

 .catch(error => console.error(error));

5. Run Your Application

Execute your script: Run your application with node app.js . This will execute the
script, and you should see the AI-generated response in your console.

Practical AI Application Development for Javascript Developers 21

Conclusion
You have now created a basic AI content generator using Node.js and the OpenAI API.
This application can serve as a foundation for more complex AI-driven projects. You can
expand it by adding a web interface, integrating it into a blog platform, or even creating
a custom API around it.

As we embrace the era of AI in web development, consider the endless possibilities that
such integrations can offer. What innovative applications can you envision for AI in your
future projects?

Additional Resources
1. Prompt engineering: https://platform.openai.com/docs/guides/prompt-engineering

2. Mistral Javascript Client: https://docs.mistral.ai/platform/client/

3. Prompt examples: https://platform.openai.com/examples

4. Prompt Engineering Guide: https://www.promptingguide.ai/

5. The LLM Index - https://sapling.ai/llm/index

6. Open LLM Leaderboard -
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

7. AlpacaEval Leaderboard - https://tatsu-lab.github.io/alpaca_eval/

Module 3: Integrating AI Models to JS Apps
This module further explores how popular AI models, both open and closed-source, can
be seamlessly integrated into JavaScript applications. We will explore APIs, external
libraries, and handling AI model responses, and conclude with a hands-on project that
brings these concepts to life.

Exploring Open-Source AI Models like Stable-Diffusion
and Gemini
Open-source AI models offer a treasure trove of possibilities for developers. These
models stand out for their accessibility and community-driven enhancements. Here are

https://platform.openai.com/docs/guides/prompt-engineering
https://docs.mistral.ai/platform/client/
https://platform.openai.com/examples
https://www.promptingguide.ai/
https://sapling.ai/llm/index
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://tatsu-lab.github.io/alpaca_eval/

Practical AI Application Development for Javascript Developers 22

some popular Open-source AI models:

Llama 2 - Developed by Meta. You can explore the demo on HuggingFace:
https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI.

Falcon – Developed by the Technology Innovation Institute (TII), UAE. You can
also play with their demo on HuggingFace:
https://huggingface.co/spaces/tiiuae/falcon-180b-demo.

MPT-30B and MPT-7B - Developed by MosaicML. Try it out here
https://huggingface.co/mosaicml/mpt-30b.

Stable Diffusion XL: Released by Stability AI, this model has made waves in the AI
community for its ability to generate high-quality images from textual descriptions.
There’s an official sandbox you can play with:
https://platform.stability.ai/sandbox/text-to-image and also a HuggingFace setup:
https://huggingface.co/spaces/stabilityai/stable-diffusion

Gemini: Released by Google, Gemini is a natural language processing multimodal
model excelling in sentiment analysis, text classification, and language generation
tasks, providing developers with tools to create applications that understand,
interpret, and generate human-like text. Documentation: https://ai.google.dev/

https://ai.meta.com/llama/
https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI
https://falconllm.tii.ae/
https://huggingface.co/spaces/tiiuae/falcon-180b-demo
https://www.mosaicml.com/mpt
https://huggingface.co/mosaicml/mpt-30b
https://stability.ai/stable-image#:~:text=Download%20Code-,Stable%20Diffusion%20XL,-Stable%20Diffusion%20XL
https://platform.stability.ai/sandbox/text-to-image
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://deepmind.google/technologies/gemini/#introduction
https://ai.google.dev/

Practical AI Application Development for Javascript Developers 23

It’s important to note that not all these open-source models are available for
commercial use.

There are also other open-source models like BLOOM and Alpaca. You can check out
the Sapling AI’s LLM index for a list of other Open Source LLMs:
https://sapling.ai/llm/index#:~:text=Link-,Open Source,-LLMs

Exploring Closed-Source (Commercial) AI Models like
Whisper and Dall-E
Closed-source AI models, often backed by commercial entities, come with the
advantage of advanced capabilities and dedicated support. Models like Whisper and
Dall-E are prime examples of this category.

Whisper: Developed by OpenAI, Whisper is an automatic speech recognition
system that is perfect for applications requiring transcription and translation.

Dall-E: Also from OpenAI, Dall-E is a cutting-edge AI model capable of generating
detailed images from textual descriptions. It's an excellent tool for creative

https://huggingface.co/blog/llama2#why-llama-2

https://sapling.ai/llm/index#:~:text=Link-,Open%20Source,-LLMs
https://huggingface.co/blog/llama2#why-llama-2

Practical AI Application Development for Javascript Developers 24

applications that merge the worlds of art and AI.

There are also other Commercial models like Claude by Anthropic with Demo:
https://claude.ai/ and Cohere by Cohere.

Working with APIs and External Libraries
Integrating AI models into JavaScript applications often involves working with APIs and
external libraries. This process includes sending requests to AI models and processing
their responses. JavaScript, with its extensive library ecosystem, simplifies these
integrations, allowing for seamless communication between your application and AI
services.

Advantages of API Endpoints vs SDKs:
API Endpoints:

No need to install additional libraries or SDKs.

Language agnostic: you can use them with any language that can make HTTP
requests.

SDKs:

Simplify complex API interactions.

Often provide additional utility functions.

For example, instead of using the Mistral client SDK as we did in module 2, we can
interact with the chat completions endpoint using Node.js native fetch API to create our
AI content generator as shown below:

require('dotenv').config(); //install dotenv

const MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completi

const apiKey = process.env.MISTRAL_API_KEY; // Ensure this is se

async function generateContent(prompt) {

 const requestBody = {

 model: 'mistral-tiny',

 messages: [{ role: 'user', content: prompt }]

https://www.anthropic.com/
https://claude.ai/
https://docs.cohere.com/docs/the-cohere-platform
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

Practical AI Application Development for Javascript Developers 25

 };

 try {

 const response = await fetch(MISTRAL_API_URL, {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Accept': 'application/json',

 'Authorization': `Bearer ${apiKey}`

 },

 body: JSON.stringify(requestBody)

 });

 const data = await response.json();

 return data.choices[0].message.content;

 } catch (error) {

 console.error('Error:', error);

 return null;

 }

}

// Using the blog post prompt

const blogPostPrompt = "Who is the most renowned French painter?

generateContent(blogPostPrompt)

 .then(content => console.log(content))

 .catch(error => console.error(error));

Handling AI Model Responses and Interactivity
Effectively managing responses from AI models is crucial. This involves parsing the data
returned by the models, error handling, and creating interactive interfaces that can
showcase the AI's capabilities in a user-friendly manner. Below is a code snippet that
parses the data returned, handles errors, and returns the resulting response in a simple

Practical AI Application Development for Javascript Developers 26

yet effective manner. In future examples and projects, we will show how to create
interactive UIs in a way that communicates the AI responses to the user.

Project: Build an Image Generation App Using Dall-E
Integration
This blog post will guide you through setting up a simple React application using Vite,
integrating OpenAI's Dall-E API to generate images, and displaying them using a form-
based UI.

We will be using OpenAI Documentation on Image Generation:
https://platform.openai.com/docs/api-reference/images/create

Setting Up the Project
1. Initialize a Vite + React Project:

Ensure you have Node.js installed.

Create a new Vite project with React by running npm init vite@latest my-dall-e-
app -- --template react .

Navigate to the project directory and install dependencies: cd my-dall-e-app &&
npm install .

Start the development server: npm run dev .

2. Install OpenAI SDK:

In your project directory, install the OpenAI SDK: npm install openai .

Remember to add your OpenAI API key to a .env.local file as
REACT_APP_OPENAI_API_KEY=your_api_key_here .

Building the React Frontend
1. Modify App.jsx :

Replace the existing code in App.jsx with the following to create a form-based
UI for image generation:

https://platform.openai.com/docs/api-reference/images/create

Practical AI Application Development for Javascript Developers 27

import React, { useState } from 'react';

import OpenAI from 'openai';

function App() {

 const [prompt, setPrompt] = useState('');

 const [imageUrl, setImageUrl] = useState('');

 const [isLoading, setIsLoading] = useState(false);

 const generateImage = async (promptText) => {

 setIsLoading(true);

 try {

 const apiKey = process.env.REACT_APP_OPENAI_API_KEY; //

 const openai = new OpenAI({

 apiKey: apiKey

 });

 const response = await openai.images.generate({

 model: 'dall-e-3',

 prompt: promptText,

 });

 setImageUrl(response.data[0].url);

 } catch (error) {

 console.error('Error:', error);

 } finally {

 setIsLoading(false);

 }

 };

 const handleSubmit = (e) => {

 e.preventDefault();

 if (prompt) {

 generateImage(prompt);

 }

 };

Practical AI Application Development for Javascript Developers 28

 return (

 <>

 <h1>Dall-E Image Generator</h1>

 <form onSubmit={handleSubmit}>

 <input

 type="text"

 value={prompt}

 onChange={(e) => setPrompt(e.target.value)}

 placeholder="Enter a prompt for Dall-E"

 />

 <button type="submit" disabled={isLoading}>

 {isLoading ? 'Generating...': 'Generate Image'}

 </button>

 </form>

 {imageUrl && <img src={imageUrl} alt="Generated from Da

 </>

);

}

export default App;

Note that the button text changes based on the API response status so
we can inform the user of what’s going on.

{isLoading ? 'Generating...' : 'Generate Image'}

API Endpoint Alternative

Alternatively, instead of using the SDK, you can also decide to query the API
endpoint using the native fetch API as shown below:

const response = await fetch(

 'https://api.openai.com/v1/images/generations',

 {

 method: 'POST',

Practical AI Application Development for Javascript Developers 29

 headers: {

 'Content-Type': 'application/json',

 Authorization: `Bearer ${apiKey}`,

 },

 body: JSON.stringify({

 model: 'dall-e-3',

 prompt: promptText,

 n: 1,

 size: '1024x1024',

 }),

 }

);

 const data = await response.json();

 setImageUrl(data.data[0].url);

Bonus: AI Voice App

If you’re interested in building a text-to-speech or speech-to-text-app app, use the
newly-gained knowledge and apply it in integrating OpenAI’s Audio models.

https://platform.openai.com/docs/guides/text-to-speech

2. Run and Test Your Application:

Start your application: npm run dev . You should have something like the
screenshot below:

https://platform.openai.com/docs/guides/text-to-speech

Practical AI Application Development for Javascript Developers 30

Visit the local development server URL (usually http://localhost:3000).

Try entering different prompts to generate images and, of course, style it using
your preferred CSS setup.

With these steps, you've successfully built an image generation application using
OpenAI's Dall-E and React. This application demonstrates the power of AI in creative
endeavors and how easily it can be integrated into modern web applications.

Conclusion
As you conclude this module, reflect on the immense potential of integrating various AI
models into JavaScript applications. The ability to work with both open-source and
closed-source models opens up a world of creativity and innovation. How will you
leverage these AI technologies in your future JavaScript projects to create applications
that were once thought impossible? Feel free to share with me your ideas on Discord.

https://discord.gg/YSRuyrEuug

Practical AI Application Development for Javascript Developers 31

Additional Resources
1. Image Generation with Stable Diffusion and Replicate:
https://replicate.com/docs/get-started/nodejs

2. Google AI JavaScript SDK: https://github.com/google/generative-ai-js

Module 4: Introduction to Retrieval
Augmented Generation
Imagine a world where AI not only understands and generates text but also embarks on
a quest for knowledge, seeking information from vast data oceans to enlighten its
responses. This is the world of Retrieval Augmented Generation (RAG) - a realm where
AI models are no longer confined to their training data but can dynamically retrieve and
utilize external information.

In this module, we will explore the intricacies of RAG, understand the role of
embeddings and vector databases, and learn about tools that facilitate the development
of RAG applications. By the end of this module, you will be equipped to build a research
assistant tool using Next.js, harnessing the power of RAG.

Basics of Retrieval Augmented Generation (RAG)
Retrieval Augmented Generation is a technique where a generative model, like GPT-
3.5, is combined with an external knowledge retrieval step in a way that improves the
accuracy and reliability of the model’s responses. This hybrid approach allows the
model to pull in relevant information in real-time, enhancing its responses or generation
with details far beyond its training data.

How RAG Works
RAG operates in two steps.

Retrieval:

First, a query is used to retrieve relevant information from (multiple) documents or data
from a large dataset.

https://replicate.com/docs/get-started/nodejs
https://github.com/google/generative-ai-js

Practical AI Application Development for Javascript Developers 32

Content generation:

Then, this retrieved data is combined with the query to generate a response. This
process ensures that the responses are not just based on learned patterns but are also
informed by specific, up-to-date, and relevant external data.

Understanding Embeddings and Vector Databases
To understand RAG, one must grasp the concept of embeddings and vector databases.

Embeddings: In AI, embeddings are numerical representations of data, whether
text, images, or sounds, in a high-dimensional space. For example, word
embeddings represent words in a vector space where similar words are closer
together. They are crucial for tasks like semantic search, where we need to find the
most relevant documents based on their content.
Some of the common Text Embedding models developers use in their AI

Practical AI Application Development for Javascript Developers 33

applications are developed by OpenAI, Google, Cohere, Jina and Mistral. Since we
will be discussing and integrating Langchain into our module project, you can have
a look at the list of embedding models available for use:
https://js.langchain.com/docs/integrations/text_embedding.

Vector Databases: These databases are designed to efficiently store and query
embeddings and enable rapid similarity searches among large collections of
embeddings, essential for the retrieval step in RAG. Some of the popular vector
databases are FAISS from Meta, Chroma, HNSWLib, Memory, and Pinecone. We
will be using the last two for our module project. You can also take a look at the list
of vector databases available for integration by Langchain:
https://js.langchain.com/docs/integrations/vectorstores

Overview of Open-Source RAG Tools of the Trade

https://js.langchain.com/docs/integrations/text_embedding
https://github.com/facebookresearch/faiss
https://github.com/chroma-core/chroma
https://github.com/nmslib/hnswlib
https://js.langchain.com/docs/integrations/vectorstores/memory
https://github.com/pinecone-io/pinecone-ts-client
https://js.langchain.com/docs/integrations/vectorstores

Practical AI Application Development for Javascript Developers 34

Several open-source tools have emerged to facilitate the development of RAG systems:

Llama Index: A data framework that facilitates the ingestion of data, storage, and
retrieval of embeddings generated from your own data, making it easier to integrate
LLMs into your applications with your own data.

Embedchain: This RAG framework helps extract your data into relevant chunks
and embeddings, making them useful in powering contextual responses to your
queries.

• Langchain: A framework for setting up AI applications that can interact with
external knowledge bases. It provides an ecosystem of integrations that allow you
to ingest data, create and store embeddings, and set up optimized retrieval
interfaces.

Integrating Vercel AI SDK
To integrate the aforementioned models and tools into a JavaScript environment like
Next.js, we will be using Vercel’s open-source AI SDK to streamline the AI development
process.

Implementing RAG in Next.js
Incorporating RAG into a Next.js application involves setting up the backend to handle
RAG operations and creating frontend components to interact with this backend.

Frontend Integration: Create UI components to take user documents and queries,
communicate with the backend, and display the generated responses.

Backend Setup: Implement the logic to retrieve data from the vector database and
pass it to the RAG model for response generation.

Module Project: Building a Research Assistant Tool
with Next.js and Langchain

Imagine having a research assistant at your fingertips, one who can understand and
provide insights from any PDF document you provide. This is not just a figment of

https://github.com/run-llama/LlamaIndexTS
https://github.com/embedchain/embedchain/tree/main/embedchain-js
https://python.langchain.com/
https://github.com/langchain-ai/langchain
https://sdk.vercel.ai/docs

Practical AI Application Development for Javascript Developers 35

imagination anymore; it's a reality we're going to build together using Next.js,
Langchain, and vector databases like MemoryVectorStore and Pinecone.

Our Tech Stack
For this project, we will be using Next.js, TypeScript, Tailwind CSS, AI SDK, and
Langchain. Additionally, we'll be exploring the use of vector databases by building a two-
step research assistant tool, utilizing both MemoryVectorStore for one-time query
retrieval and Pinecone for conversational chat retrieval. This dual approach leverages
the strengths of each vector database to provide a comprehensive and versatile
research tool.

Prerequisites
Before we dive in, ensure you have Node installed on your machine. You'll also need an
OpenAI API Key, which you can get from OpenAI.

Setting Up Next.js
Start by creating a new Next.js project:

npx create-next-app@latest research-assistant

Follow the CLI prompts to bootstrap your project. Opt for using the App Router, the src/
directory, and choose to install Tailwind CSS too.

https://openai.com/

Practical AI Application Development for Javascript Developers 36

Creating the .env.local File
In your project directory, create a .env.local file to store environment variables:

OPENAI_API_KEY="openai_api_key"

Installing Necessary Packages
Install the packages needed for our project:

npm install langchain pdf-parse ai react-dropzone @pinecone-data

Step 1: One-Time Query Retrieval with MemoryVectorStore
In the first part of our application, we use MemoryVectorStore to handle one-time
queries. This setup is ideal for quick document summarization and extracting key
information from uploaded research papers.

Crafting the /ingest-research Route
To begin building our research assistant tool, we need to create a route for ingesting
research material, specifically PDF documents. This route, named /ingest-research , will
be responsible for handling the upload of PDF files and processing them using
Langchain to extract meaningful data that our AI can later utilize.

Start by creating a new file route.ts under the directory app/api/ingest-research . The
code in this file will set up an API endpoint in our Next.js application, which will handle
the uploading and processing of PDF files.

Here's a detailed look at the code for the /ingest-research route:

import { PDFLoader } from "langchain/document_loaders/fs/pdf";

import { NextRequest, NextResponse } from "next/server";

import { PineconeClient } from "@pinecone-database/pinecone";

import { OpenAIEmbeddings } from "langchain/embeddings/openai";

import { PineconeStore } from "langchain/vectorstores/pinecone";

import { RecursiveCharacterTextSplitter } from "langchain/text_s

Practical AI Application Development for Javascript Developers 37

export async function POST(request: NextRequest) {

 // Extract FormData from the request

 const data = await request.formData();

 // Extract the uploaded PDF file

 const file = data.get("file") as File;

 // Ensure a file is provided

 if (!file) {

 return NextResponse.json({ success: false, error: "No file p

 }

 // Confirm the file is a PDF

 if (file.type !== "application/pdf") {

 return NextResponse.json({ success: false, error: "File is n

 }

 //Load the PDF and split it into smaller documents

 const pdfLoader = new PDFLoader(file);

 const textSplitter = new RecursiveCharacterTextSplitter({

 chunkSize: 1000,

 chunkOverlap: 200,

 });

 const splitDocuments = await pdfLoader.loadAndSplit(textSplitt

// Create embeddings for the documents

 const embeddings = new OpenAIEmbeddings({ apiKey: process.env

 const vectorStore = await MemoryVectorStore.fromDocuments(spli

 // Set up the RAG model

 const model = new ChatOpenAI({ modelName: "gpt-3.5-turbo", ope

 const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRe

 // Generate a summary of the research document

 const response = await chain.call({

 query: "Summarize the primary arguments or findings in this

Practical AI Application Development for Javascript Developers 38

 });

 return NextResponse.json({ success: true, summary: response.te

}

In this setup, the Langchain RetrievalQAChain uses the MemoryVectorStore for efficient
retrieval of relevant document sections, which the ChatOpenAI model then summarizes.

The MemoryVectorStore is ephemeral, which is why we need to set up
Pinecone for our next step.

Step 2: Conversational Chat Retrieval with Pinecone
The second part of our API route enhances the user experience by enabling a
conversational chat interface with the documents. For this, we integrate Pinecone, a
scalable vector database perfect for handling conversational context and maintaining
state across queries.

Advantages of Pinecone for Conversational Retrieval
Stateful Interactions: Pinecone helps us maintain the context of a conversation,
allowing the AI to provide coherent and consistent responses over a session.

Scalability: It is designed to handle large-scale vector datasets efficiently, making it
suitable for extensive research libraries.

Real-time Responses: Pinecone's architecture ensures quick retrieval, essential
for maintaining a fluid conversation.

Signup for Pinecone
For this, sign up for a free-tier starter account at Pinecone. Create an Index with the
name of your choice (e.g., research-assistant) and set the Dimensions to 1536, aligning
with OpenAI model requirements and the details to your .env file:

PINECONE_API_KEY="pinecone_api_key"

PINECONE_INDEX_NAME="research-assistant"

https://pinecone.io/

Practical AI Application Development for Javascript Developers 39

Add the Pinecone setup as shown below after // Create embeddings for the documents line
in the /ingest-research route.

// Initialize the Pinecone client

 const pineconeClient = new PineconeClient();

 await pineconeClient.init({

 apiKey: process.env.PINECONE_API_KEY ?? "",

 environment: "us-east-1-aws",

 });

 const index = pineconeClient.Index(process.env.PINECONE_INDEX_

 // Store the processed documents in Pinecone

 await PineconeStore.fromDocuments(splitDocuments, new OpenAIEmb

 pineconeIndex,

 maxConcurrency: 5,

 namespace: filename,

 textKey: 'text'

 });

Here’s the link to the full version of the /ingest-research route.

Building the /chat-research Route
The next step in our project is to create the /chat-research route. This endpoint will be
the core of our research assistant, handling user queries by retrieving relevant
information from our vector store and generating insightful responses using OpenAI
models.

Create a new file route.ts under the directory app/api/chat-research . This file will contain
the logic for processing user queries and interfacing with our AI model.

Here’s the full code for the /chat-research route:

import { NextRequest, NextResponse } from "next/server";

import { PineconeClient } from "@pinecone-database/pinecone";

import { PineconeStore } from "langchain/vectorstores/pinecone";

import { OpenAIEmbeddings } from "langchain/embeddings/openai";

import { OpenAI } from "langchain/llms/openai";

Practical AI Application Development for Javascript Developers 40

import { VectorDBQAChain } from "langchain/chains";

import { CallbackManager } from "langchain/callbacks";

export async function POST(request: NextRequest) {

 // Parse the JSON body from the request

 const body = await request.json();

 // Initialize the Pinecone Client

 const pineconeClient = new PineconeClient();

 await pineconeClient.init({

 apiKey: process.env.PINECONE_API_KEY,

 environment: "us-east-1-aws",

 });

 const index = pineconeClient.Index(process.env.PINECONE_INDEX_

 // Prepare the vector store with the Pinecone index

 const vectorStore = new PineconeStore(new OpenAIEmbeddings(),

 // Set up the OpenAI model

 const openAIModel = new OpenAI({

 modelName: "gpt-3.5-turbo",

 apiKey: process.env.OPENAI_API_KEY,

 });

 // Create a Langchain chain for Q&A

 const chain = new VectorDBQAChain(openAIModel, vectorStore);

 // Process the query and generate a response

 const response = await chain.call({ query: body.prompt });

 return NextResponse.json({ response });

}

Building the Frontend

Practical AI Application Development for Javascript Developers 41

The success of our research assistant tool also depends on its user interface. It needs
to be simple yet effective, allowing users to easily upload PDF documents and interact
with the AI for queries. We will develop this interface using React, leveraging the
capabilities of Next.js and integrating a file dropzone for PDF uploads and an input field
for AI queries.

Step 1: Setting Up the Metadata in layout.tsx

Begin by updating the layout.tsx under the app/ directory. This file will define the basic
metadata for our application, setting the stage for a cohesive and informative UI. Here's
a sample setup for your layout.tsx :

export const metadata = {

 title: "AI-Powered Research Assistant",

 description: "Interact with your research documents through AI

};

Step 2: Building the Main Page Interface in page.tsx

Now, let's focus on the main page of our application, page.tsx . This is where users will
interact with the tool, upload documents, and ask questions.

Here’s a detailed code structure for the page.tsx :

"use client";

import { useCallback } from "react";

import { useDropzone } from "react-dropzone";

import { useCompletion } from "ai/react";

export default function Home() {

 // When a file is dropped in the dropzone, call the `/api/inge

 const onDrop = useCallback(async (acceptedFiles: File[]) => {

 const file = acceptedFiles[0];

 if (file.type !== "application/pdf") {

 alert("Please upload a PDF");

 return;

Practical AI Application Development for Javascript Developers 42

 }

 const formData = new FormData();

 formData.set("file", file);

setUploading(true);

try {

 const res = await fetch('/api/ingest-research', {

 method: 'POST',

 body: formData,

 });

 const result = await res.json();

 if (result.success) {

 alert('File uploaded successfully!');

 } else {

 alert('File upload failed!');

 }

 } catch (error) {

 console.error('Error uploading file:', error);

 alert('An error occurred while uploading the file.');

 } finally {

 setUploading(false);

 }

 }, []);

 // Configure react-dropzone

 const { getRootProps, getInputProps } = useDropzone({

 onDrop,

 });

 // Vercel AI hook for generating completions through an AI mod

 const { completion, input, isLoading, handleInputChange, handl

 useCompletion({

 api: "/api/chat-research",

Practical AI Application Development for Javascript Developers 43

 });

 return (

 <main className="flex min-h-screen flex-col items-center p-2

 <h1>AI-Powered Research Assistant</h1>

 <div

 {...getRootProps({

 className:

 "dropzone bg-gray-900 border border-gray-800 p-10 ro

 })}

 >

 <input {...getInputProps()} />

 <p>Drag 'n' drop a PDF here, or click to select a file</

 </div>

 <div className="mx-auto w-full items-center max-w-md py-24

 <form onSubmit={handleSubmit} className="flex flex-col g

 <input

 className=" w-full max-w-md text-black border border

 value={input}

 placeholder="Ask a question..."

 onChange={handleInputChange}

 />

 <button

 disabled={isLoading}

 type="submit"

 className="py-2 border rounded-lg bg-gray-900 text-s

 >

 Submit

 </button>

 <p className="text-center">

 Completion result: {completion === "" ? "Awaiting re

 </p>

 </form>

Practical AI Application Development for Javascript Developers 44

 </div>

 </main>

);

}

In this setup:

We use react-dropzone to create a drag-and-drop area for uploading PDFs.

The onDrop function handles the logic for uploading files to the /ingest-research
endpoint.

The handleSubmit function sends user queries to the /chat-research endpoint and
displays the AI's response.

Styling can be adjusted as per your design preference using CSS or a framework
like Tailwind CSS.

Running the Application
To test your application, run:

npm run dev

Upload the research documents of your choice (in PDF format), and once the training is
complete, you can start querying the AI with prompts related to the uploaded content.

Conclusion
You've successfully built a full-stack RAG setup capable of learning and chatting with
any research document it's trained on. This tool stands as a testament to the power of
combining AI with modern web development.

As you explore further, think about how this technology can be expanded. How can you
utilize AI to enhance the way we interact with and learn from vast amounts of textual
data?

If you have any questions or need assistance, feel free to send a message.

Additional Resources

Practical AI Application Development for Javascript Developers 45

1. Getting Started With Embeddings: https://huggingface.co/blog/getting-started-
with-embeddings

2. What are embeddings?
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

3. Embeddings:
https://docs.llamaindex.ai/en/stable/module_guides/models/embeddings.html#

4. Streaming: https://sdk.vercel.ai/docs/concepts/streaming

5. AI SDK Templates & Examples: https://sdk.vercel.ai/docs#examples

Module 5: Building Complex AI Applications
In the ever-evolving landscape of AI, the ability to construct complex applications stands
as a hallmark of advanced development skills. In this module, we dive deep into the
intricacies of advanced AI topics like temperature control, AI function calling, and the
creation of AI agents. Going beyond basic interactions, this section explores how to
extend AI models for specialized functions and create autonomous AI agents. This
module will not only enhance your understanding but also equip you with the tools to
build sophisticated AI-driven applications.

Advanced Prompt Engineering and Optimization
The foundation of any sophisticated AI interaction lies in its prompt engineering. A well-
crafted prompt can steer generative AI models in the desired direction, significantly
impacting the quality and relevance of their responses.

The Essence of Prompt Design: Crafting effective prompts involves a keen
understanding of the AI's language model. For instance, GPTs respond differently
based on the nuances of the prompt given. According to a study by OpenAI,
tweaking just a few words in a prompt can lead to markedly different outputs.

Temperature Control for Creativity and Precision: The concept of 'temperature'
in AI controls the randomness of the generated responses. A lower temperature
yields more predictable and conservative outputs, whereas a higher temperature
can generate more creative and diverse responses. This feature allows developers

https://huggingface.co/blog/getting-started-with-embeddings
https://huggingface.co/blog/getting-started-with-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://docs.llamaindex.ai/en/stable/module_guides/models/embeddings.html#
https://sdk.vercel.ai/docs/concepts/streaming
https://sdk.vercel.ai/docs#examples

Practical AI Application Development for Javascript Developers 46

to tailor the AI's responses to suit the needs of their application, whether it be a
creative storytelling assistant or a factual information retriever.

AI Function Calling
Modern AI models, such as those offered by OpenAI, can perform an array of functions
– from translating languages to generating code. These models can self-invoke
functions provided and carry out specific tasks like summarization, translation, or even
code generation.

Supported by GPT 3.5-turbo and GPT 4 models, the function calling feature is a nice
way for developers like you to describe a set of defined functions that the models can
intelligently use to connect to external data points, thereby enhancing their responses.

Crafting AI Agents
An AI agent is an autonomous entity capable of performing tasks, interacting, and
learning. Creating an AI agent involves not only technical prowess but also an
understanding of user experience and interaction dynamics. Experts believe that AI
agents are rapidly evolving and finding their place in various industries, from customer
service to personal assistants.

Module Projects:

For this module, we will build three AI agents that will highlight how you can
fuse function calling into an AI agent setup to create amazing AI apps capable
of running executable code based on user inputs.

This sub-section will guide you through building complex AI applications with increasing
levels of complexity. We'll explore integrating LangChain with BabyAGI, AutoGPT,
and the OpenAI SDK in Node.js, focusing on creating autonomous agents that can
perform tasks independently and utilize external data.

Through these projects, you'll gain hands-on experience in building AI agents with
varying complexities. Starting from a basic setup, you'll progress to integrating
external data tools and finally create a location-aware suggestion system.

Practical AI Application Development for Javascript Developers 47

We will follow the structure below for both AI agents.

Designing the Agent: Map out the functionalities and user interactions for your AI
agent. This could range from a customer service bot to a more complex assistant
capable of handling various tasks.

Implementation: Utilize JavaScript and appropriate AI SDKs to bring your AI agent
to life. Integrate advanced prompt engineering techniques and ensure your agent
can handle function calls effectively.

Testing and Iteration: Test your AI agent with various scenarios and refine its
capabilities based on feedback and performance.

Project 1: Basic AI Agent with LangChain and BabyAGI
In this tutorial, we’ll create a simple AI agent that independently crafts a culinary tour
itinerary in Paris without relying on external data sources. Remember to compare the
results here and that of project 2.

1. Setting Up:

Initialize a Node.js project and install LangChain with npm install langchain
@langchain/openai .

Import necessary modules from LangChain.

import { BabyAGI } from "langchain/experimental/babyagi";

import { MemoryVectorStore } from "langchain/vectorstores/

import { OpenAIEmbeddings, OpenAI } from "@langchain/opena

2. Building the Agent:

BabyAGI uses the OpenAI model to generate a culinary itinerary.

The MemoryVectorStore manages embeddings for task processing.

The AI is tasked with creating a unique Parisian culinary experience

import { BabyAGI } from 'langchain/experimental/babyagi';

import { MemoryVectorStore } from 'langchain/vectorstores/mem

import { OpenAIEmbeddings, OpenAI } from '@langchain/openai';

Practical AI Application Development for Javascript Developers 48

const vectorStore = new MemoryVectorStore(new OpenAIEmbedding

const babyAGI = BabyAGI.fromLLM({

 llm: new OpenAI({ temperature: 0 }),

 vectorstore: vectorStore,

 maxIterations: 3,

});

async function generateParisCulinaryItinerary() {

 const response = await babyAGI.call({ objective: "Generate

 console.log("Culinary Tour Itinerary in Paris:", response);

}

generateParisCulinaryItinerary();

Project 2: AI Agents with External Data Tools (LangChain and
AutoGPT)
This tutorial will enhance the AI agent's ability to use external data tools for an enriched
culinary tour in Paris. We will also be using AutoGPT here to add a new flavor. If you
want to use BabyAGI for this, check out the documentation.

We will need the Serp API key for this tutorial. You can get yours here:
https://serpapi.com/users/sign_up?plan=free. They have a free plan that
should be okay for this tutorial.

1. Setting Up:

Initialize a Node.js project and install LangChain with npm install
@langchain/openai @langchain/community .

Import necessary modules from LangChain.

https://js.langchain.com/docs/use_cases/autonomous_agents/baby_agi#example-with-tools
https://serpapi.com/users/sign_up?plan=free

Practical AI Application Development for Javascript Developers 49

import { AutoGPT } from 'langchain/experimental/autogpt';

import { ReadFileTool, WriteFileTool, SerpAPI } from 'lang

import { NodeFileStore } from 'langchain/stores/file/node

import { HNSWLib } from '@langchain/community/vectorstores

import { OpenAIEmbeddings, ChatOpenAI } from '@langchain/o

Integrating External Data Tools:

Utilize tools like ReadFileTool , WriteFileTool , and SerpAPI for external data
interaction.

2. Building the Enhanced Agent:

AutoGPT combines LangChain tools with OpenAI's language model.

External data tools enhance the agent's ability to provide detailed and context-
rich itineraries.

import { AutoGPT } from 'langchain/experimental/autogpt';

import { ReadFileTool, WriteFileTool, SerpAPI } from 'langcha

import { NodeFileStore } from 'langchain/stores/file/node';

import { HNSWLib } from '@langchain/community/vectorstores/hn

import { OpenAIEmbeddings, ChatOpenAI } from '@langchain/open

const store = new NodeFileStore();

const tools = [

 new ReadFileTool({ store }),

 new WriteFileTool({ store }),

 new SerpAPI(process.env.SERPAPI_API_KEY, {

 location: "Paris, France",

 hl: "fr",

 gl: "fr",

 }),

];

const vectorStore = new HNSWLib(new OpenAIEmbeddings());

const autogpt = AutoGPT.fromLLMAndTools(

Practical AI Application Development for Javascript Developers 50

 new ChatOpenAI({ temperature: 0 }),

 tools,

 {

 memory: vectorStore.asRetriever(),

 aiName: "Foobar",

 aiRole: "Assistant",

 }

);

async function runEnhancedAgent() {

 const response = await autogpt.run(["Generate an enriched c

 console.log("Enhanced Culinary Tour Itinerary in Paris:", r

}

runEnhancedAgent();

Project 3: Building a Location-Based Suggestion Agent with
OpenAI SDK and Node.js
In this tutorial, we'll create a Node.js application that uses OpenAI's function-calling
capability to suggest activities or foods based on the user's location. Our app will be
simple: it will determine the user's location and then generate suggestions accordingly.

Setting Up Your Project

1. Initialize a Node.js Project:

Create a new directory for your project and run npm init -y to initialize a
Node.js project.

Install the necessary packages: npm install openai node-fetch dotenv .

2. Setting Up Environment Variables:

In your project directory, create a file named .env .

Add your OpenAI API key: OPENAI_API_KEY=your_openai_api_key_here .

Building the Application

3. Fetch Location and Set Up OpenAI

Practical AI Application Development for Javascript Developers 51

The fetchUserLocation function retrieves the user's location based on their IP
address.

Setting Up OpenAI: We configure the OpenAI SDK with the API key and define the
tools (functions) that the AI can suggest calling.

import OpenAI from "openai";

import dotenv from 'dotenv';

dotenv.config();

const openAI = new OpenAI({

 apiKey: process.env.OPENAI_API_KEY,

 dangerouslyAllowBrowser: true,

});

async function fetchUserLocation() {

 const locationResponse = await fetch("https://ipapi.co/json

 return await locationResponse.json();

}

const aiTools = [

 {

 type: "function",

 function: {

 name: "fetchUserLocation",

 description: "Determines user location based on IP",

 parameters: {

 type: "object",

 properties: {},

 },

 },

 },

];

const toolset = {

Practical AI Application Development for Javascript Developers 52

 fetchUserLocation,

};

4. Creating the Agent Function and Generating Suggestions

The agent function is where the magic happens. It communicates with OpenAI to
get suggestions on which function to call and then executes the suggested function.

async function agent(inputText) {

 let chatHistory = [

 {

 role: "system",

 content: `You are a smart assistant. Use the provided t

 },

 {

 role: "user",

 content: inputText,

 },

];

 for (let attempt = 0; attempt < 5; attempt++) {

 const aiResponse = await openai.chat.completions.create({

 model: "gpt-4",

 messages: chatHistory,

 tools: aiTools,

 });

 const { finish_reason, message } = aiResponse.choices[0];

 if (finish_reason === "tool_calls" && message.tool_calls)

 const functionName = message.tool_calls[0].function.nam

 const calledFunction = toolset[functionName];

 const functionArgs = JSON.parse(message.tool_calls[0].f

 const functionArgsArr = Object.values(functionArgs);

 const functionResponse = await calledFunction.apply(

 null,

Practical AI Application Development for Javascript Developers 53

 functionArgsArr,

);

 chatHistory.push({

 role: "function",

 name: functionName,

 content: `

 The result of the last function was this: $

 functionResponse,

)}

 `,

 });

 } else if (finish_reason === "stop") {

 chatHistory.push(message);

 return message.content;

 }

 }

 return "No conclusive suggestion could be generated. Please

}

5. Running Your Application:

To run your application:

Start the Application: Use node yourfilename.js in your terminal.

Interact with the AI: The script will execute, and you should see food suggestions
based on the detected location in your console.

async function main() {

 const userQuery =

 "Could you suggest some local delicacies based on where I

 const suggestion = await agent(userQuery);

 console.log("Suggestion:", suggestion);

}

main();

Practical AI Application Development for Javascript Developers 54

By following these steps, you've just created an intelligent agent capable of making
function calls to provide real-world information and suggestions. This agent exemplifies
how AI can be leveraged to create interactive and dynamic applications.

Full code

import OpenAI from "openai";

import dotenv from 'dotenv';

dotenv.config();

const openAI = new OpenAI({

 apiKey: process.env.OPENAI_API_KEY,

 dangerouslyAllowBrowser: true,

});

async function fetchUserLocation() {

 const locationResponse = await fetch("https://ipapi.co/json

 const locationData = await locationResponse.json();

 return locationData;

}

const aiTools = [

 {

 type: "function",

 function: {

 name: "fetchUserLocation",

 description: "Determines user location based on IP",

 parameters: {

 type: "object",

 properties: {},

 },

 },

 },

];

Practical AI Application Development for Javascript Developers 55

const toolset = {

 fetchUserLocation,

};

async function agent(inputText) {

 let chatHistory = [

 {

 role: "system",

 content: `You are a smart assistant. Use the provided t

 },

 {

 role: "user",

 content: inputText,

 },

];

 for (let attempt = 0; attempt < 5; attempt++) {

 const aiResponse = await openai.chat.completions.create({

 model: "gpt-4",

 messages: chatHistory,

 tools: aiTools,

 });

 const { finish_reason, message } = aiResponse.choices[0];

 if (finish_reason === "tool_calls" && message.tool_calls)

 const functionName = message.tool_calls[0].function.nam

 const calledFunction = toolset[functionName];

 const functionArgs = JSON.parse(message.tool_calls[0].f

 const functionArgsArr = Object.values(functionArgs);

 const functionResponse = await calledFunction.apply(

 null,

 functionArgsArr,

);

 chatHistory.push({

Practical AI Application Development for Javascript Developers 56

 role: "function",

 name: functionName,

 content: `

 The result of the last function was this: $

 functionResponse,

)}

 `,

 });

 } else if (finish_reason === "stop") {

 chatHistory.push(message);

 return message.content;

 }

 }

 return "No conclusive suggestion could be generated. Please

}

async function main() {

 const userQuery =

 "Could you suggest some local delicacies based on where I

 const suggestion = await agent(userQuery);

 console.log("Suggestion:", suggestion);

}

main();

Conclusion
With the skills to build complex AI agents and utilize advanced AI techniques, the
possibilities are endless. If you want to build more advanced AI agents, check out the
links listed in the resources section.

Reflecting on your journey through this module, what kind of innovative AI agent do you
envision creating that could revolutionize the way we interact with technology? Feel free
to share with me your ideas on Discord.

Resources

https://discord.gg/YSRuyrEuug

Practical AI Application Development for Javascript Developers 57

1. https://js.langchain.com/docs/use_cases/autonomous_agents/baby_agi
2.
https://cookbook.openai.com/examples/how_to_build_an_agent_with_the_node_sdk

3. https://js.langchain.com/docs/modules/agents/how_to/custom_agent

4. https://js.langchain.com/docs/integrations/tools/

5. https://vercel.com/templates/next.js/agent-gpt

6. https://www.mercity.ai/blog-post/advanced-prompt-engineering-techniques

Module 6: Security, Ethics, and Performance
in AI Development
This module, an essential part of this course, delves into the critical aspects of security,
ethics, and performance in AI development. It's a guide to building AI applications that
are not only powerful and efficient but also secure, ethical, and respectful of user
privacy.

1. Security Practices in AI Applications
As we integrate AI models into apps used by millions of users across the world, it’s
important that we recognize the unique security challenges that have emerged and how
we can prevent or at least mitigate them.
The first step in doing that is:

Understanding AI-specific Security Risks:
Some of the risks that are emerging are:

Adversarial Attacks: These are efforts to fool AI models with deceptive data. It's
crucial to understand how these attacks can manipulate AI decision-making.

Data Poisoning: This involves corrupting the training data of an AI model. The
integrity of data is paramount, as poisoned data can lead to flawed or biased AI
outputs.

https://js.langchain.com/docs/use_cases/autonomous_agents/baby_agi
https://cookbook.openai.com/examples/how_to_build_an_agent_with_the_node_sdk
https://js.langchain.com/docs/modules/agents/how_to/custom_agent
https://js.langchain.com/docs/integrations/tools/
https://vercel.com/templates/next.js/agent-gpt
https://www.mercity.ai/blog-post/advanced-prompt-engineering-techniques

Practical AI Application Development for Javascript Developers 58

AIJacking: An attack where an old model or dataset name is registered by an
attacker, leading to the unintentional use of malicious data. You can read this
amazing expose on the matter: Legit Discovers "AI Jacking" Vulnerability in
Popular Hugging Face AI Platform.

A good way to better your security posture is by going through the resources on AI
security prepared by The Open Worldwide Application Security Project (OWASP). I have
linked some of these in the resources section of this module.

Implementing Robust Security Protocols:
To counter these AI-specific and other web development security risks, robust security
protocols are essential:

Implementing Real-Time Personally Identifiable Information Safeguard:
Implementing real-time protections for personally identifiable information is critical.
Tools that anonymize or redact PII in AI interactions are essential in safeguarding
user privacy.

Encryption and Secure APIs: Implement HTTPS in Node.js applications to secure
data transmission.

Secure Authentication Methods: Use modern authentication protocols like JWT
(JSON Web Tokens) for secure user authentication.

Data Minimization and Anonymization: Reduce access to sensitive data, create
anonymized datasets for secondary uses, and document the purpose before
collection.

Regular Audits and Compliance:
It is important to conduct regular security audits, comply with data protection
regulations, and employ tools to automate these processes.

Adherence to Data Protection Regulations: Compliance with GDPR, CCPA, and
other data protection laws is crucial. This involves regular audits and updates to
security practices.

OWASP AI Security and Privacy Guide: Familiarize with the OWASP guide for AI
security, focusing on risks related to AI supply chain attacks and vulnerabilities.

https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack
https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack
https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack

Practical AI Application Development for Javascript Developers 59

As AI becomes more integrated into software development, understanding and
implementing robust security measures is not just a technical necessity but a moral
imperative. How can JavaScript developers contribute to this evolving landscape,
ensuring their AI applications are as secure as they are innovative?

2. Ethical Considerations and Best Practices In
Building AI Apps
As we build AI apps, especially for large numbers of users, understanding and
implementing ethical considerations and best practices becomes increasingly important.

Here are some tips to implement while paying attention to some key Principles of AI
Ethics: Transparency, Fairness, Accountability, Reliability, Security, and Privacy.

Identifying and Mitigating Biases: Bias in AI can stem from skewed data sets or
preconceived notions held by developers. Implementing diverse training datasets
and conducting regular bias audits are crucial.

Frameworks for Ethical Decision-Making: Introduce ethical frameworks like the
Asilomar AI Principles, which emphasize safety, privacy, and fairness.

Ongoing Monitoring and Assessment: Continually assess AI systems for ethical
integrity, adapting and updating as societal norms and values evolve.

3. Privacy-focused Local LLMs
AI teams are now focusing on developing private, LLM-focused solutions that can
process data locally. This is crucial for individuals and organizations who handle
sensitive data and need to comply with regulations. As privacy concerns continue to
grow, these solutions are becoming increasingly important.

Advantages of Local Data Processing:

Reduced Data Breach Risks: By processing data on local servers, the risk of
external data breaches is significantly lowered.

Compliance with Privacy Regulations: Local processing aids in compliance with
stringent data protection laws like GDPR and CCPA.

Let’s explore some of the available solutions in the market:

Practical AI Application Development for Javascript Developers 60

GPT4All: Developed by NomicAI, this solution offers open-source large language
models that run locally on CPUs and GPUs, making advanced AI accessible without
compromising data privacy.

privateGPT: Focuses on private interactions with documents using GPT, ensuring
data privacy and preventing data leaks.

AnythingLLM: An open-source, customizable enterprise-ready document chatbot
providing an local alternative to the closed-source, browser-based ChatGPT
experience.

4. Enhancing and Scaling AI Applications - Strategies
for Optimal Performance and Deployment
Here are some best practices for deploying and scaling AI applications:

Model Optimization: Choose the best model based on evaluation benchmarks
relevant to your specific task and data. You can take a look at some of the
leaderboards we’ve shared through this course to inform your decision.

User Experience and Interaction Design: Ensure the application is user-friendly
and intuitive, with a focus on interaction design for AI systems.

Exploring LLM Frameworks: Encourage experimentation with various LLM
frameworks like LlamaIndex, LangChain, and EmbedChain to find the best fit for the
application.

Deployment Platforms Selection: Choose the most suitable platform for
deployment based on the application's needs. Know when to use Serverless,
Server, and Background workers for, e.g., Discord AI bots.

CI/CD Automation for Streamlining Deployment: Implement CI/CD pipelines for
automated testing, integration, and deployment, enhancing deployment efficiency
and reliability.

Continuous Learning and Best Practices: Emphasize the importance of staying
informed about the latest trends, techniques, and best practices in AI development.

Conclusion

https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://github.com/imartinez/privateGPT
https://github.com/Mintplex-Labs/anything-llm

Practical AI Application Development for Javascript Developers 61

As we navigate through the complexities of AI development, we must remember that
with great power comes great responsibility. Security, ethics, and performance are not
just checkboxes in the development process; they are the pillars upon which trust and
efficacy are built.

As you, the JavaScript developer, embark on creating AI applications, how will you
balance these critical aspects to not only meet user expectations but also contribute
positively to the ethical advancement of AI technology? Feel free to share with me your
ideas on Discord.

Additional Resources
1- OWASP Top 10 for LLM

2 - OWASP TOP 10 for Machine Learning security

3- OWASP AI Security and Privacy Guide

4- Six Steps Toward AI Security

5- Securing AI & LLM-based Applications: Best Practices

Additional Resources - Checklists,
Roadmaps, Visual aids

Checklists for each module

List of more projects you can build

Roadmaps for learning paths and skill development

Visual aids and infographics for complex concepts

Community forum for collaboration and support

Module Checklists

Module 1: JavaScript for AI

- [] Understand the role of JavaScript in AI application develo

- [] Learn about JavaScript frameworks like Node.js and Next.js

https://discord.gg/YSRuyrEuug
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-machine-learning-security-top-10/docs/ML06_2023-AI_Supply_Chain_Attacks.html
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://blogs.nvidia.com/blog/ai-security-steps/
https://www.youtube.com/watch?v=B3KAuDoTymE

Practical AI Application Development for Javascript Developers 62

- [] Set up a development environment with Node.js and Next.js

- [] Familiarize with the JavaScript ecosystem relevant to AI.

Module 2: Basics of AI Development

- [] Introduction to Large Language Models (LLMs) like GPT, BER

- [] Learn the basics of prompt engineering and model selection

- [] Integrate LLMs with JavaScript.

- [] Develop a simple AI content generator using Node.js.

Module 3: Integrating AI Models to JS Apps

- [] Explore open-source AI models (e.g., Stable-diffusion, Gem

- [] Investigate commercial AI models (e.g., Whisper, Dall-E).

- [] Learn to work with APIs and external libraries.

- [] Understand handling AI model responses and interactivity.

- [] Build an Image generation app using Dall-E integration.

Module 4: Introduction to Retrieval Augmented Generation

- [] Understand the basics of Retrieval Augmented Generation (R

- [] Learn about embeddings and vector databases.

- [] Explore open-source tools like Llama Index, Embedchain, an

- [] Integrate AI SDK in development.

- [] Implement RAG in a Next.js project.

- [] Develop a Research assistant tool.

Module 5: Building Complex AI Applications

- [] Master advanced prompt engineering and optimization.

- [] Understand AI function calling and creating AI agents.

- [] Develop a complex AI agent as a project.

Practical AI Application Development for Javascript Developers 63

Module 6: Security, Ethics, and Performance in AI Development

- [] Learn security practices in AI applications.

- [] Understand ethical considerations and best practices in AI

- [] Explore privacy-focused Local LLMs.

- [] Learn performance optimization techniques for AI apps.

- [] Understand best practices for deploying and scaling AI app

List of more projects you can build
1. Sentiment Analysis Tool:

Build a tool that analyzes and categorizes the sentiment of user input or social
media posts using AI models like BERT or GPT.

Integrate with social media APIs to fetch real-time data.

2. Language Translation App:

Create an app that uses AI models for real-time language translation.

Incorporate speech recognition and text-to-speech for an interactive
experience.

3. AI-Powered Chatbot for Customer Support:

Develop a chatbot that can handle customer queries and provide relevant
information or redirect to human support.

Integrate with websites or customer service platforms.

4. Personal Finance Assistant:

An application that uses AI to analyze personal finance patterns and provides
budgeting and investment advice.

5. Voice-Activated Home Automation System:

Build a system that uses voice recognition to control home appliances and
settings.

6. Fitness and Diet Planner:

Practical AI Application Development for Javascript Developers 64

An AI system that creates personalized fitness and diet plans based on user
preferences and goals.

7. Automated Resume Screening Tool:

Develop a tool that assists HR in screening resumes and predicting candidate
fit based on job descriptions and resume content.

